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Administrivia

● Slides linked by QR code
● Wednesday office hours

○ Moved to 11-12
● Shared Computing Cluster

○ You should have gotten an email about access last Friday.
○ Discussion section will start covering how to use it this afternoon.

● Homework
○ Notebook 01 posted last week, due Wednesday.
○ Problem Set 02 posted today, due next Monday.

● Links to everything at https://dl4ds.github.io/fa2024/

https://dl4ds.github.io/fa2024/
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Supervised Learning Recap



Supervised Learning Applications



• Univariate regression problem (one output, real value)

Regression
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Supervised learning overview

● Supervised learning models
○ Mapping from one or more inputs to one or more outputs. ← functionality

○ Based on example input/output pairs. ← supervision

● What is a model?
○ A family of equations → “inductive bias” (what we chose expecting a good match)

○ Or a specific member of that family

○ Or a code artifact implementing either…



Models and Parameters

● Within a family of models,
○ Individual models are distinguished by parameters.

○ Model outputs are a function of their parameters and the current inputs.

● Model operations
○ Prediction / Inference = computing the outputs from inputs using parameters

○ Training = updating parameters based on a given set of training inputs and outputs

■ Real goal: updated parameters should help predict non-training outputs “well”

■ Proxy goal: updated parameters do help predict training outputs “well”

■ “Empirical risk minimization” is general argument linking these goals.

■ “Well” to be defined…
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Notation:

● Input:

● Output:

● Model:

Variables always Roman letters

Normal lowercase = scalar
Bold  lowercase = vector
Capital Bold = matrix

Functions always square brackets

Normal lower case =  returns scalar
Bold lowercase = returns vector
Capital Bold = returns matrix

Also Appendix A of the 
book.



Notation example:

● Input:

● Output:

● Model:

Vector: Structured 
or tabular data

Scalar output

Scalar output function
(with vector input)



Model

● Parameters:

● Model :

Parameters always 
Greek letters
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Data Set and Loss Function
● Training dataset of I pairs of input/output examples:

● Loss function or cost function measures how bad a model is:

   

or for short: Returns a scalar that is smaller 
when model maps inputs to 
outputs better



Training
● Loss function: 

● Find the parameters that minimize the loss:

Returns a scalar that is smaller 
when model maps inputs to 
outputs better



Supervised Learning with scikit-learn (we will use pytorch)

Easy to code up what we’ve seen so far -

model = sklearn.linear_model.LinearRegression(...)

model.fit(X, y)

model.predict(X)

Works for many off the shelf models, if

● there is existing code for the model family of interest, and
● the data is small enough to load at once, and
● the loss function is right for your application, and …



Testing (and evaluating)
● To test the model, run on a separate test dataset of input / output pairs

● See how well it generalizes to new data

Dataset

Training Dataset Test Set

Training Dataset
Validation

Dataset Test Set

20-30%

~10% 20-30%

Fair

Better

Best
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Example: 1D Linear Regression Training Data



Example: 1D Linear Regression Loss Function

Loss function:

“Least squares loss function”



Example: 1D Linear Regression Loss Function

Loss function:

“Least squares loss function”



Example: 1D Linear Regression Loss Function

Loss function:

“Least squares loss function”



Example: 1D Linear Regression Loss Function

Loss function:

“Least squares loss function”



Example: 1D Linear Regression Loss Function

Loss function:

“Least squares loss function”



Example: 1D Linear Regression Loss Function



Example: 1D Linear Regression Loss Function



Example: 1D Linear Regression Loss Function



Example: 1D Linear Regression Loss Function



Example: 1D Linear Regression Training



Example: 1D Linear Regression Training



Example: 1D Linear Regression Training



Example: 1D Linear Regression Training



Example: 1D Linear Regression Training

This technique is known as gradient descent



Possible Objections to Gradient Descent
● But you can fit the line model in closed form!

○ Yes – but we won’t be able to do this for more complex models

● But we could exhaustively try every slope and intercept combo!
○ Yes – but we won’t be able to do this when there are a million parameters

Here's a visualization of the loss surface for the 56-layer neural network [VGG-56](http://arxiv.org/abs/1409.1556), from
[Visualizing the Loss Landscape of Neural Networks](https://www.cs.umd.edu/~tomg/projects/landscapes/). 



Example: 1D Linear Regression Testing

● Test with different set of paired input/output data (Test Set)
○ Measure performance

○ Degree to which Loss is same as training = generalization

● Might not generalize well because of
○ Underfitting - does not match real data trends

■ Model too simple?

■ Did not train enough?

○ Overfitting - fits to statistical peculiarities of data

■ Model too complex?

■ Trained too much?
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Challenges - Wide Variety of Data to Model

Where do all these inputs and outputs come from?



Preparing Data for Learning

● Challenges

● Fixed Interface

● Sequence Interface



Fixed Interface

● Encode real inputs and outputs as fixed size vectors of numbers.
● Model takes in fixed input vector and returns fixed size output vector.



Ad hoc Text Data Collection

Pretty common for regression problems

● Text parsing… may have missing or weird values if parsing fails
● Database queries if you are lucky



Regression Problems

● Model just outputs a number… should be close to the real one.
● No particular semantics?
● Any range constraints?

○ Non-negative?
○ Min/max value?

● May change structure of neural network based on these constraints…
○ Mostly in the activation function of the output node.



Binary Classification

● Training outputs:
○ Raw data says true/false, 

yes/no, 1/0,
occasionally probabilities.

○ Usually map to 1/0 values, or 
keep probabilities.

○ One vs two output columns 
depends on model internals.

● Model outputs:
○ Should be constrained 

between zero and one.
○ Default interpretation as 

probabilities.



Multiclass Classification → One Hot Encoding

● Training outputs:
○ Raw data often is a class 

name as a string.
○ Map distinct class names to 

different columns.
○ Set column to 1 or 0 based 

on class match.
● Model outputs:

○ Should be constrained 
between zero and one.

○ Default interpretation as 
probabilities.

○ Need to make sure these add 
up to one.

Classical Electronica Hip Hop Jazz Pop Metal

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1



Multiclass Classification 💔 Binary Encoding

Why not use a binary encoding?

● Bits of binary encoding rarely have semantic information.
○ Partial column matches is not a sign of similarity.
○ Forces learning algorithm to learn decoding… 

● Unclear interpretation of uncertain output
○ What does [0.6, 0.6, 0.7] mean?
○ Probability interpretations are nonsensical.
○ Rounding to 0/1 may not match a class.

Classical 0 0 0

Electronica 0 0 1

Hip Hop 0 1 0

Jazz 0 1 1

Pop 1 0 0

Metal 1 0 1
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Sequence View

● Encode more sophisticated inputs and outputs as sequences of numbers.
● Will apply some parts of our models repeatedly

○ Originally recurrent neural networks
○ Recently attention and transformers

● Brief look at strings now, much more later.



String Tokenization (then One Hot Encoding)
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Where are we going next?
● Shallow neural networks

○ Universal approximation
● Deep neural networks

○ More flexibility with fewer parameters
● Loss functions

○ How do we decide what parameters are better?
○ Where did least squares come from?
○ When should we use other loss functions?

● Fitting models / Gradients / Measuring / Regularization
○ How we actually train these neural networks
○ And encourage them to generalize…



Feedback?


