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Administrivia

e Slides linked by QR code

e \Wednesday office hours
o Moved to 11-12

e Shared Computing Cluster

o You should have gotten an email about access last Friday.

o Discussion section will start covering how to use it this afternoon.
e Homework

o Notebook 01 posted last week, due Wednesday.
o Problem Set 02 posted today, due next Monday.

e Links to everything at https://dl4ds.qithub.io/fa2024/



https://dl4ds.github.io/fa2024/

Lecture Outline

e Supervised Learning
e Preparing Data for Learning
e \Where are We Going Next?



Supervised Learning Recap




Supervised Learning Applications
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Regression

Real world input

6000 square feet,
4 bedrooms,
previously sold for
$235K in 2005,

1 parking spot.

e Univariate regression problem (one output, real value)
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Supervised learning

e Overview

e Notation
Model
Loss function
Training
Testing
Linear regression example
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e \Where are we going?
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Supervised learning

e Qverview

e Notation
Model
Loss function
Training
Testing
Linear regression example
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Loss function
Training
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e \Where are we going?
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Supervised learning overview

e Supervised learning models
o Mapping from one or more inputs to one or more outputs. <« functionality
o Based on example input/output pairs. <« supervision
e What is a model?
o A family of equations — “inductive bias” (what we chose expecting a good match)
o Or a specific member of that family

o Or a code artifact implementing either...



Models and Parameters

o Within a family of models,
o Individual models are distinguished by parameters.

o Model outputs are a function of their parameters and the current inputs.

o Model operations
o Prediction / Inference = computing the outputs from inputs using parameters
o Training = updating parameters based on a given set of training inputs and outputs
m Real goal: updated parameters should help predict non-training outputs “well”
m Proxy goal: updated parameters do help predict training outputs “well”
m “Empirical risk minimization” is general argument linking these goals.

m “Well” to be defined...



Supervised learning

e Overview

e Notation
o Model
o Loss function
o Training
o Testing
e 1D Linear regression example
o Model
Loss function
Training
Testing

o O O



Also Appendix A of the
book.

Notation:

® |Input:

Variables always Roman letters

Normal lowercase = scalar
o Output' Bold lowercase = vector
Capital Bold = matrix

® Model: Functions always square brackets

y — f[X} Normal lower case = returns scalar
Bold lowercase = returns vector
Capital Bold = returns matrix



Notation example:

® [nput:

mileage o e
® Output:
Yy = [price}
® Model:
y = flx



Model

° .
Parameters: Parameters always

¢ Greek letters

® Model :

y =1flx,¢



Data Set and Loss Function

e Training dataset of / pairs of input/output examples:

{Xia Yi}7{:1



Data Set and Loss Function

e Training dataset of / pairs of input/output examples:

{Xia Yi}r{:1

e | oss function or cost function measures how bad model is;:

L ¢7 f[Xa ¢]7 {X’ia Yi 7{:1

S~—— ~~ d
model train data




Data Set and Loss Function

e Training dataset of / pairs of input/output examples:

{Xia Yi}r{:1

e | oss function or cost function measures how bad a model is:

L Qb, f[Xa ¢]7 {X’ia Yi 7{:1

S~—— ~~ d
model train data

or for short: L - Returns a scalar that is smaller
[¢ ) when model maps inputs to

outputs better




Training
e Loss function:

l Returns a scalar that is smaller
when model maps inputs to

outputs better

e Find the parameters that minimize the loss:

A

¢ = arg;nin {L [qﬁ]}



Supervised Learning with scikit-learn (we will use pytorch)

Easy to code up what we’ve seen so far -

model = sklearn.linear model.LinearRegression(...)
model.fit (X, V)
model .predict (X)

Works for many off the shelf models, if

e there is existing code for the model family of interest, and
e the data is small enough to load at once, and
e the loss function is right for your application, and ...



Testing (and evaluating)

e To test the model, run on a separate test dataset of input / output pairs

o See how well it generalizes to new data

20-30%
~10% 20-30%

Best Training Dataset VaDI;f::Zn Test Set



Supervised learning

® QOverview

® Notation
O Model
O Loss function
O Training
O Testing

® 1D Linear regression example
O Model
O Loss function
O Training
O Testing



Example: 1D Linear Regression Model

® Model:

y = flx, @]
= ¢o + Q17

® Parameters

o=



Example: 1D Linear Regression Model
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Example: 1D Linear Regression Model
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Example: 1D Linear Regression Model

® Model: 20
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Example: 1D Linear Regression Training Data
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Example: 1D Linear Regression Loss Function
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Example: 1D Linear Regression Loss Function
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Example: 1D Linear Regression Loss Function
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Example: 1D Linear Regression Loss Function
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Example: 1D Linear Regression Loss Function
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Example: 1D Linear Regression Loss Function
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Example: 1D Linear Regression Loss Function
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Example: 1D Linear Regression Loss Function

2.0

Loss, L. = 0.19
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Example: 1D Linear Regression Loss Function
a) b) Loss, L[¢]
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Example: 1D Linear Regression Training
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Example: 1D Linear Regression Training
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Example: 1D Linear Regression Training
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Example: 1D Linear Regression Training
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Example: 1D Linear Regression Training
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This technique is known as gradient descent



Possible Objections to Gradient Descent

® But you can fit the line model in closed form!

O Yes — but we won'’t be able to do this for more complex models

® But we could exhaustively try every slope and intercept combo!

O Yes — but we won’t be able to do this when there are a million parameters

Here's a visualization of the loss surface for the 56-layer neural network [VGG-56](http://arxiv.org/abs/1409.1556), from
[Visualizing the Loss Landscape of Neural Networks](https://www.cs.umd.edu/~toma/projects/landscapes/).




Example: 1D Linear Regression Testing

o Test with different set of paired input/output data (Test Set)

o Measure performance
o Degree to which Loss is same as training = generalization

2.0

o Might not generalize well because of
o Underfitting - does not match real data trends 1 o ©
m Model too simple? | °

m Did not train enough?
o Overfitting - fits to statistical peculiarities of data

Output, y
O

m Model too complex?

m Trained too much? -
0.0 ' ' ' ' 1.10 '
Input,

X



Lecture Outline

e Supervised Learning
e Preparing Data for Learning
e \Where are We Going Next?



Preparing Data for Learning

e Challenges
e Fixed Interface

e Sequence Interface



Preparing Data for Learning

e Fixed Interface

e Sequence Interface



Challenges - Wide Variety of Data to Model

Where do all these inputs and outputs come from?
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Preparing Data for Learning

e Challenges

e Sequence Interface



Fixed Interface

e Encode real inputs and outputs as fixed size vectors of numbers.
e Model takes in fixed input vector and returns fixed size output vector.



Ad hoc Text Data Collection

Real world input

Model input

6000 square feet,
4 bedrooms,
previously sold for

$235K in 2005,
1 parking spot.

—
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4
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1

Model

Model output

Real world output
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Pretty common for regression problems

Predicted price
is $340k

Text parsing... may have missing or weird values if parsing fails
Database queries if you are lucky




Regression Problems

e Model just outputs a number... should be close to the real one.
e No particular semantics?

e Any range constraints?
o Non-negative?
o  Min/max value?

e May change structure of neural network based on these constraints...
o Mostly in the activation function of the output node.




Binary Classification

e Training outputs:

o Raw data says true/false,
yes/no, 1/0,
occasionally probabilities.

o Usually map to 1/0 values, or
keep probabilities.

o  One vs two output columns
depends on model internals.

e Model outputs:
o Should be constrained
between zero and one.
o Default interpretation as
probabilities.

Deep learning
model

— s~

Negative




Multiclass Classification — One Hot Encoding

e Training outputs: S
o Raw data often is a class 0.52 Elsctianica
name as a string.
o Map distinct class names to = —
different columns. ad s
o Set column to 1 or O based P i & 0.08 ]
on class match. AL
o Model outputs:
Should be constrained
between zero and one. . . .
o Default interpretation as Classical @ Electronica | Hip Hop | Jazz Pop Metal
probabilities.
o Need to make sure these add 0 1 0 0 0 0
up to one. 0 0 0 1 0 0
0 0 0 0 0 1




Multiclass Classification €9 Binary Encoding

Why not use a binary encoding?

Bits of binary encoding rarely have semantic information.

(@)

(@)

Partial column matches is not a sign of similarity.
Forces learning algorithm to learn decoding...

Unclear interpretation of uncertain output

(@)

(@)

(@)

What does [0.6, 0.6, 0.7] mean?
Probability interpretations are nonsensical.
Rounding to 0/1 may not match a class.

Classical

Electronica

Hip Hop

Jazz

Pop

Metal




Preparing Data for Learning

e Challenges

e Fixed Interface



Sequence View

e Encode more sophisticated inputs and outputs as sequences of numbers.

e Will apply some parts of our models repeatedly

o  Originally recurrent neural networks
o Recently attention and transformers

e Brief look at strings now, much more later.



[3]

String Tokenization (then One Hot Encoding)

import tiktoken

encoding = tiktoken.encoding_for_model("gpt-40")

tokens =
tokens

[976,
67314,
673,
28380,
11,
290,
38312,
673,
146652,
11;
326,
290,
29684,
88244,
1299,
54699]

encoding.encode("The steak was terrible, the salad was rotten, and the soup tasted like socks")

[8] [encoding.decode([t]) for t in tokens]

Sy ['The',

steak',
was',
terrible',

the',
salad',
was',
rotten',

and',
the',
soup',
tasted',
like',
socks']

“The steak was terrible,
the salad was rotten, and
the soup tasted like socks”

[8672]
8194
9804
8634 >
8672

Deepleanﬁhg
model
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e \Where are We Going Next?



Where are we going next?

Shallow neural networks

o Universal approximation
Deep neural networks

o More flexibility with fewer parameters
Loss functions

o How do we decide what parameters are better?
o  Where did least squares come from?
o  When should we use other loss functions?

Fitting models / Gradients / Measuring / Regularization
o How we actually train these neural networks
o And encourage them to generalize...



Feedback?




