BOSTON UNIVERSITY

Deep Learning for Data Science DS 542

Lecture 02 Supervised Learning

Slides originally by Thomas Gardos. Images from <u>Understanding Deep Learning</u> unless otherwise cited.

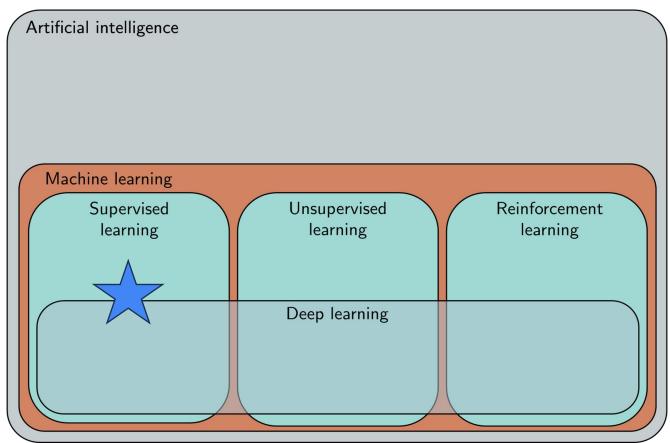
Administrivia

- Slides linked by QR code
- Wednesday office hours
 - Moved to 11-12
- Shared Computing Cluster
 - You should have gotten an email about access last Friday.
 - Discussion section will start covering how to use it this afternoon.
- Homework
 - Notebook 01 posted last week, due Wednesday.
 - Problem Set 02 posted today, due next Monday.
- Links to everything at https://dl4ds.github.io/fa2024/

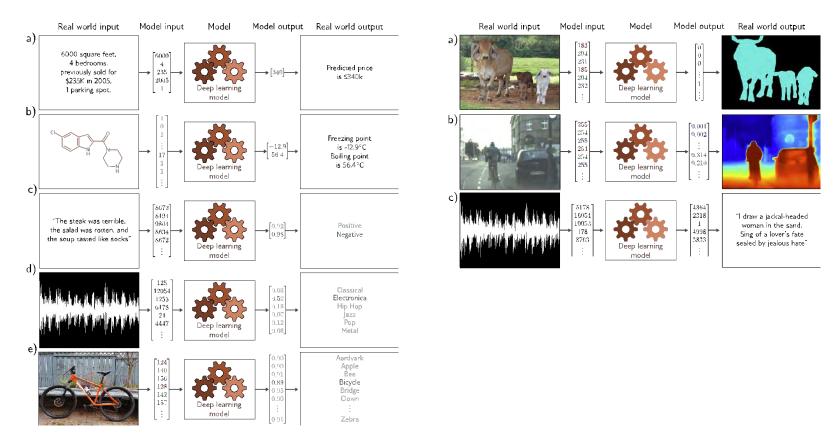
Lecture Outline

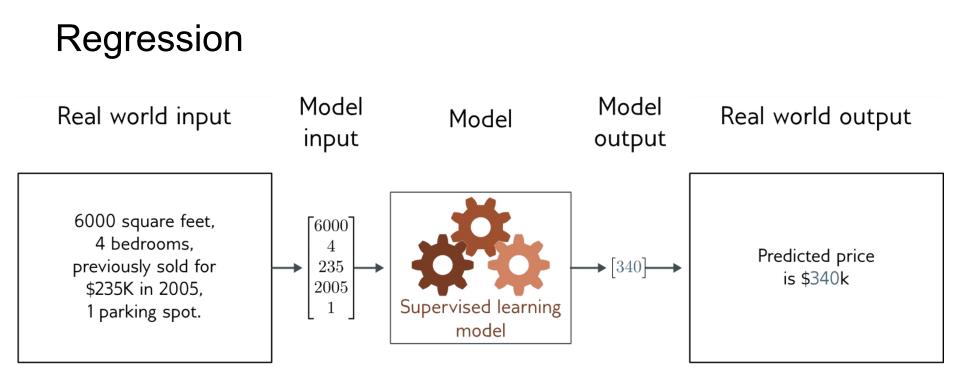
- Supervised Learning
- Preparing Data for Learning
- Where are We Going Next?

Supervised Learning Recap



Supervised Learning Applications





• Univariate regression problem (one output, real value)

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Supervised learning overview

• Supervised learning models

- Mapping from one or more inputs to one or more outputs. ← functionality
- \circ Based on example input/output pairs. \leftarrow supervision

• What is a model?

- A family of equations \rightarrow "inductive bias" (what we chose expecting a good match)
- Or a specific member of that family
- Or a code artifact implementing either...

Models and Parameters

- Within a family of models,
 - Individual models are distinguished by parameters.
 - Model outputs are a function of their parameters and the current inputs.
- Model operations
 - Prediction / Inference = computing the outputs from inputs using parameters
 - Training = updating parameters based on a given set of training inputs and outputs
 - Real goal: updated parameters should help predict non-training outputs "well"
 - Proxy goal: updated parameters do help predict training outputs "well"
 - "Empirical risk minimization" is general argument linking these goals.
 - "Well" to be defined...

Supervised learning

• Overview

• Notation

- $\circ \ \text{Model}$
- $\circ~$ Loss function
- Training
- \circ Testing
- 1D Linear regression example
 - $\circ \ \text{Model}$
 - $\circ~$ Loss function
 - Training
 - \circ Testing

Notation:

• Input:

• Output:

• Model:

$$\mathbf{y} = \mathbf{f}[\mathbf{x}]$$

X

У

Variables always Roman letters

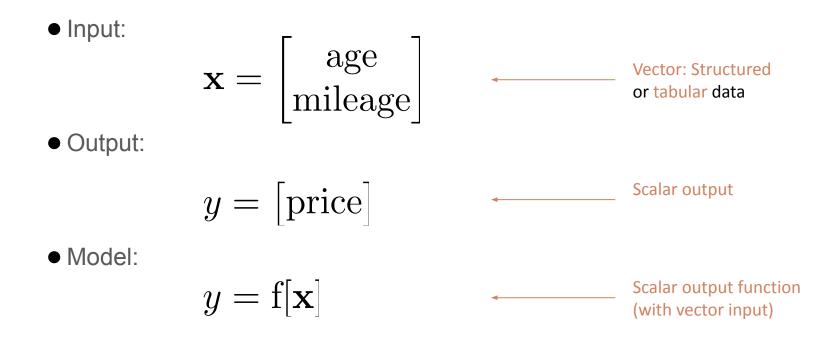
Normal lowercase = scalar Bold lowercase = vector Capital Bold = matrix

Functions always square brackets

Normal lower case = returns scalar Bold lowercase = returns vector Capital Bold = returns matrix

Also Appendix A of the book.

Notation example:



Model

• Parameters:

Parameters always Greek letters

• Model :

 $\mathbf{y} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$

Data Set and Loss Function

• Training dataset of *I* pairs of input/output examples:

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^I$$

Data Set and Loss Function

• Training dataset of *I* pairs of input/output examples:

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^I$$

• Loss function or cost function measures how bad model is:

$$L\left[\boldsymbol{\phi}, \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}\right]$$

model train data

Data Set and Loss Function

• Training dataset of *I* pairs of input/output examples:

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^I$$

• Loss function or cost function measures how bad a model is:

$$L\left[\phi, \mathbf{f}[\mathbf{x}, \phi], \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}
ight]$$

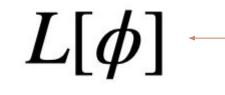
model train data

or for short:

Returns a scalar that is smaller when model maps inputs to outputs better

Training

• Loss function:



Returns a scalar that is smaller when model maps inputs to outputs better

• Find the parameters that minimize the loss:

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[\operatorname{L} \left[\boldsymbol{\phi} \right] \right]$$

Supervised Learning with scikit-learn (we will use pytorch)

Easy to code up what we've seen so far -

```
model = sklearn.linear_model.LinearRegression(...)
model.fit(X, y)
model.predict(X)
```

Works for many off the shelf models, if

- there is existing code for the model family of interest, and
- the data is small enough to load at once, and
- the loss function is right for your application, and ...

Testing (and evaluating)

- To test the model, run on a separate test dataset of input / output pairs
- See how well it generalizes to new data

Supervised learning

Overview

Notation

- Model
- Loss function
- Training
- Testing

• 1D Linear regression example

- Model
- Loss function
- Training
- Testing

• Model:

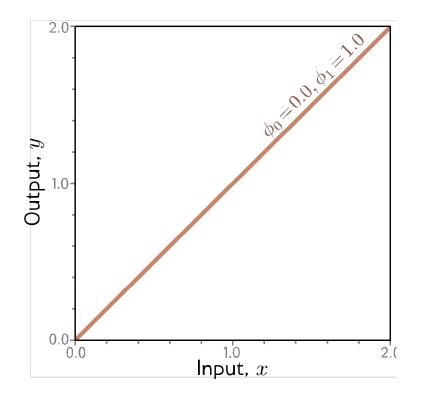
$$y = \mathbf{f}[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

$$\boldsymbol{\phi} = \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix} \xleftarrow{\hspace{0.5cm} \mathsf{y-offset}} \\ \xleftarrow{\hspace{0.5cm} \mathsf{slope}}$$

• Model:

 $y = \mathbf{f}[x, \phi]$ $= \phi_0 + \phi_1 x$

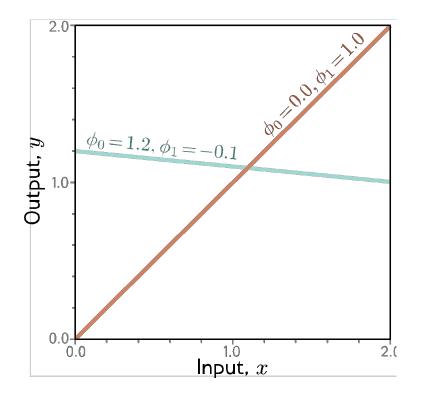
$$\boldsymbol{\phi} = \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix} \xleftarrow{\hspace{0.5cm} \text{slope}}$$



• Model:

$$y = \mathbf{f}[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

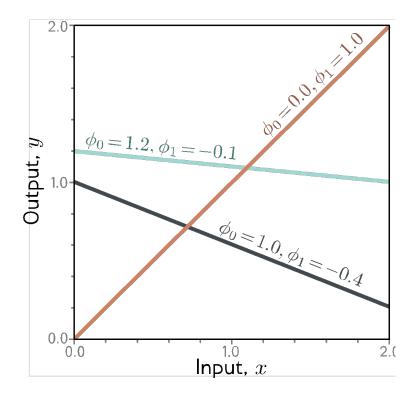
$$\boldsymbol{\phi} = \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix} \xleftarrow{\hspace{0.5cm} \text{slope}}$$



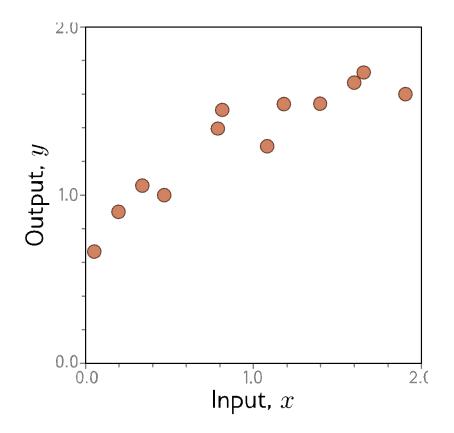
• Model:

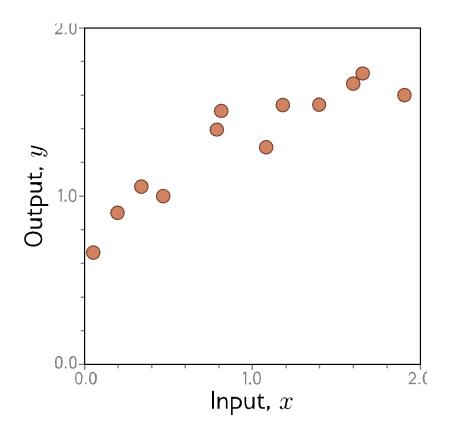
$$y = \mathbf{f}[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

$$\boldsymbol{\phi} = \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix} \xleftarrow{\hspace{0.5cm} \text{slope}}$$



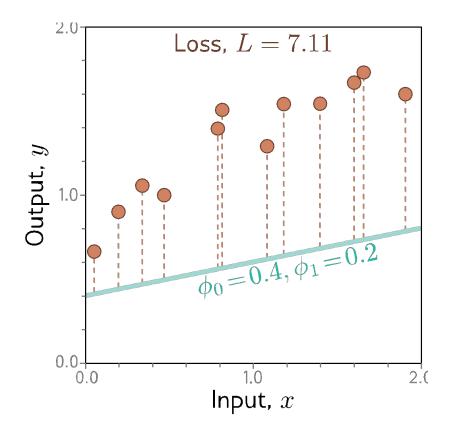
Example: 1D Linear Regression Training Data





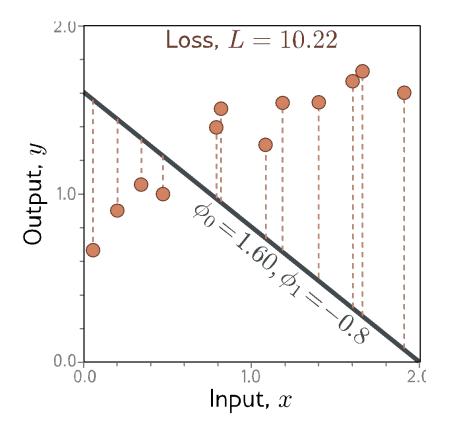
Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$



Loss function:

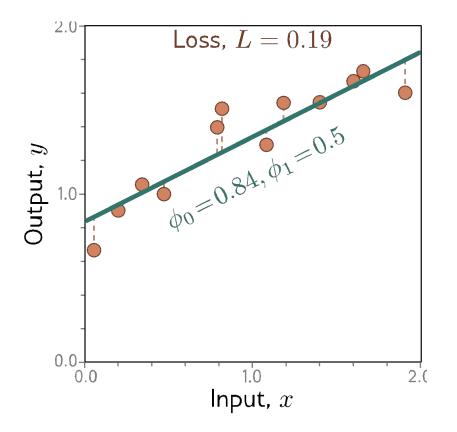
$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$



Loss function:

L

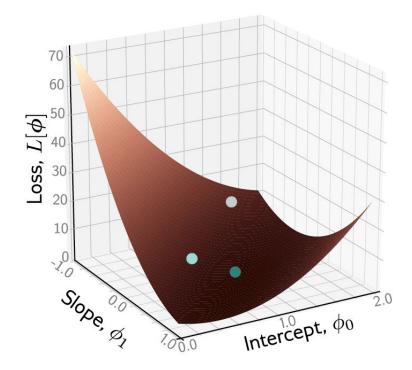
$$\begin{aligned} [\phi] &= \sum_{i=1}^{I} (\mathbf{f}[x_i, \phi] - y_i)^2 \\ &= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2 \end{aligned}$$



Loss function:

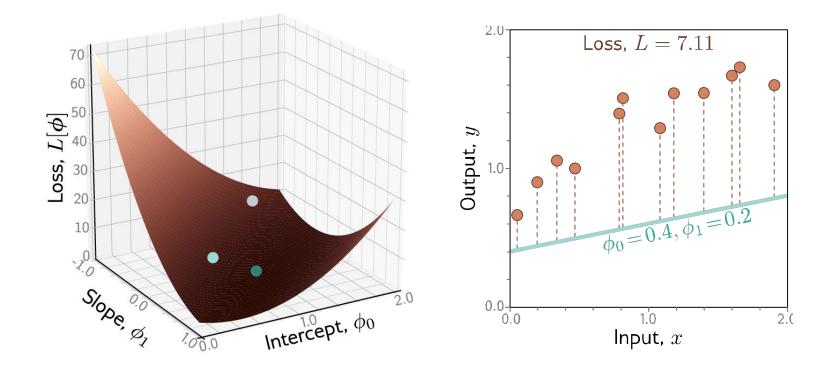
L

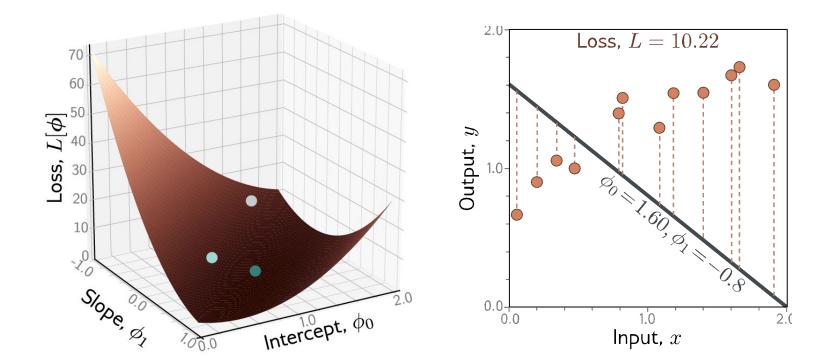
$$\begin{aligned} [\phi] &= \sum_{i=1}^{I} (\mathbf{f}[x_i, \phi] - y_i)^2 \\ &= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2 \end{aligned}$$

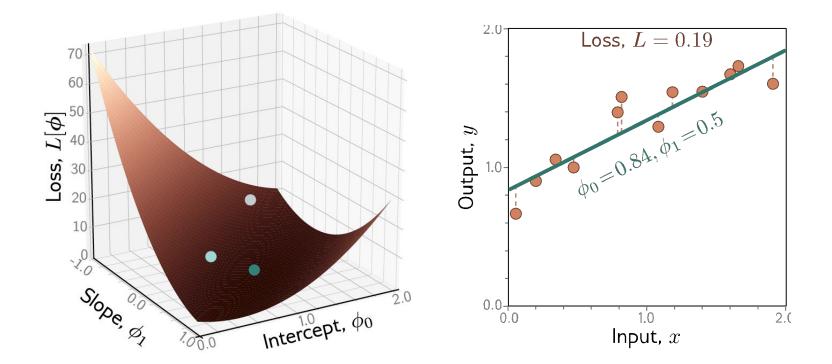


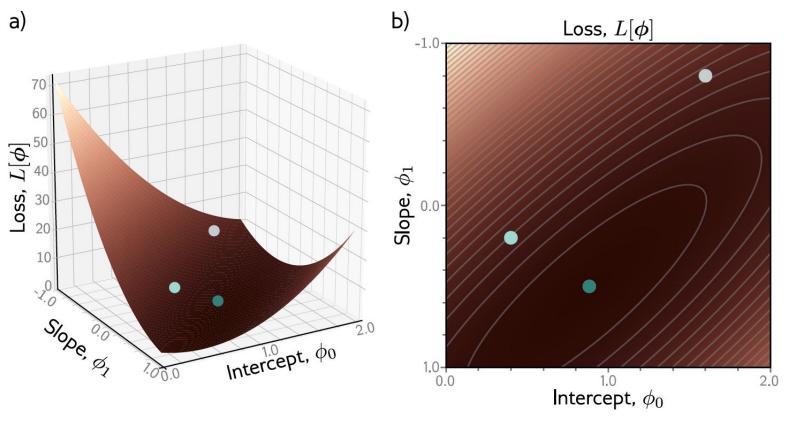
Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

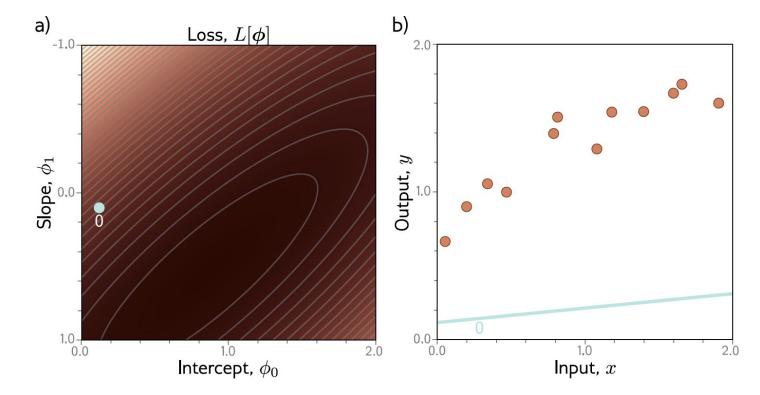


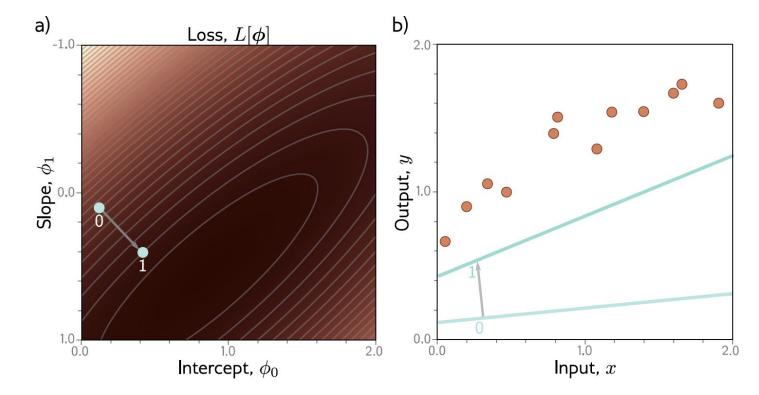


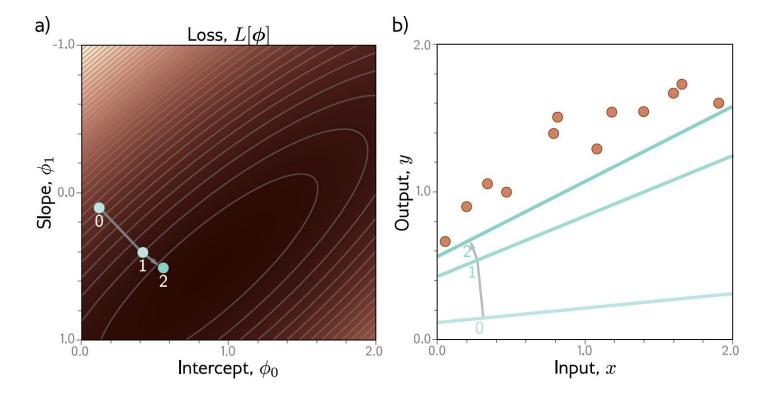


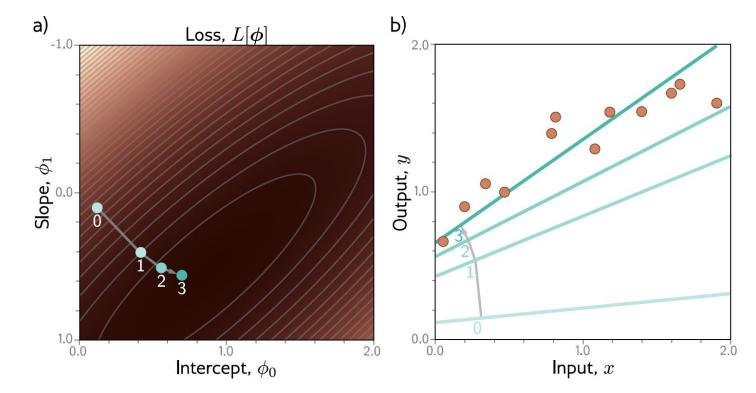


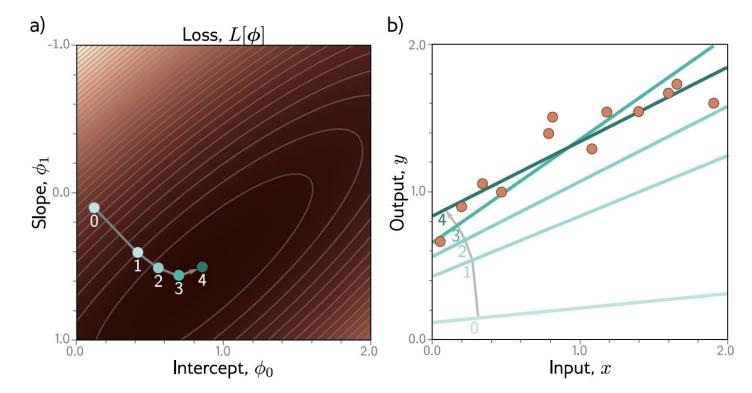
Example: 1D Linear Regression Training











This technique is known as gradient descent

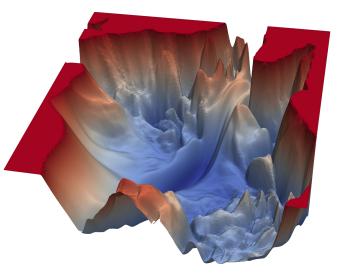
Possible Objections to Gradient Descent

• But you can fit the line model in closed form!

○ Yes – but we won't be able to do this for more complex models

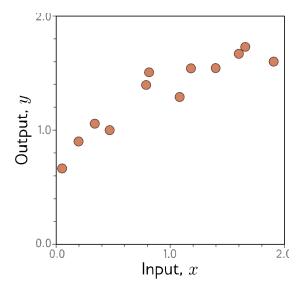
• But we could exhaustively try every slope and intercept combo!

○ Yes – but we won't be able to do this when there are a million parameters



Here's a visualization of the loss surface for the 56-layer neural network [VGG-56](<u>http://arxiv.org/abs/1409.1556</u>), from [Visualizing the Loss Landscape of Neural Networks](<u>https://www.cs.umd.edu/~tomg/projects/landscapes/</u>).

- Test with different set of paired input/output data (Test Set)
 - Measure performance
 - Degree to which Loss is same as training = generalization
- Might not generalize well because of
 - Underfitting does not match real data trends
 - Model too simple?
 - Did not train enough?
 - Overfitting fits to statistical peculiarities of data
 - Model too complex?
 - Trained too much?



Lecture Outline

- Supervised Learning
- Preparing Data for Learning
- Where are We Going Next?

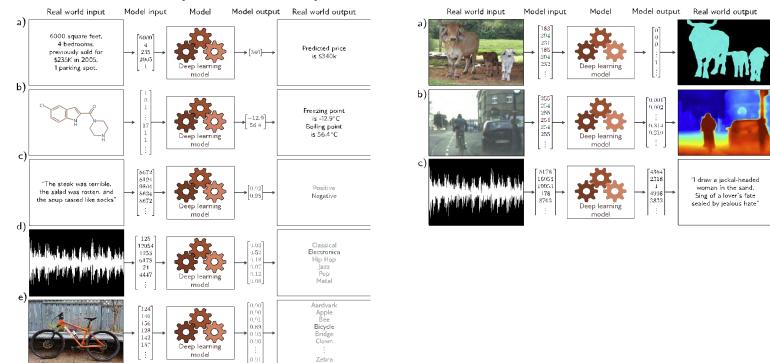
Preparing Data for Learning

- Challenges
- Fixed Interface
- Sequence Interface

Preparing Data for Learning

- Challenges
- Fixed Interface
- Sequence Interface

Challenges - Wide Variety of Data to Model



Where do all these inputs and outputs come from?

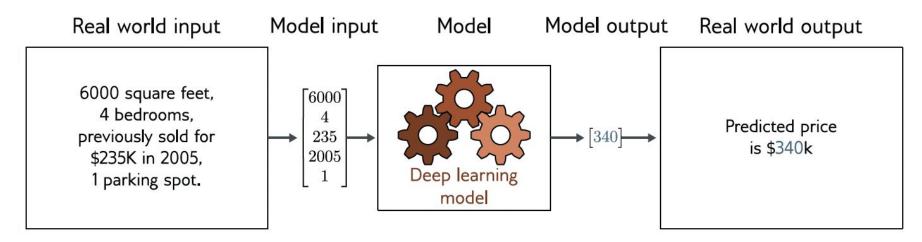
Preparing Data for Learning

- Challenges
- Fixed Interface
- Sequence Interface

Fixed Interface

- Encode real inputs and outputs as fixed size vectors of numbers.
- Model takes in fixed input vector and returns fixed size output vector.

Ad hoc Text Data Collection

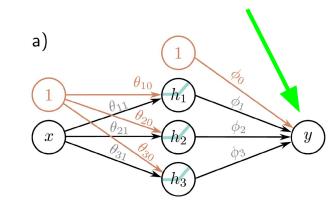


Pretty common for regression problems

- Text parsing... may have missing or weird values if parsing fails
- Database queries if you are lucky

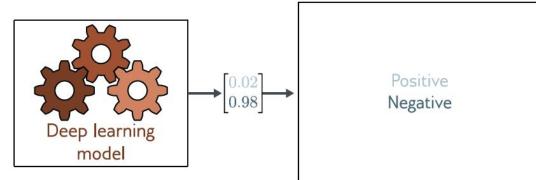
Regression Problems

- Model just outputs a number... should be close to the real one.
- No particular semantics?
- Any range constraints?
 - Non-negative?
 - Min/max value?
- May change structure of neural network based on these constraints...
 - Mostly in the activation function of the output node.



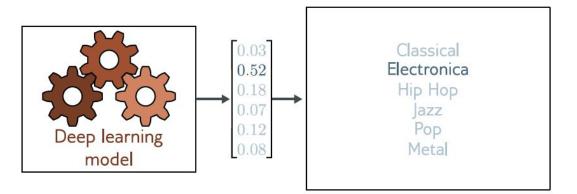
Binary Classification

- Training outputs:
 - Raw data says true/false, yes/no, 1/0, occasionally probabilities.
 - Usually map to 1/0 values, or keep probabilities.
 - One vs two output columns depends on model internals.
- Model outputs:
 - Should be constrained between zero and one.
 - Default interpretation as probabilities.



Multiclass Classification → One Hot Encoding

- Training outputs:
 - Raw data often is a class name as a string.
 - Map distinct class names to different columns.
 - Set column to 1 or 0 based on class match.
- Model outputs:
 - Should be constrained between zero and one.
 - Default interpretation as probabilities.
 - Need to make sure these add up to one.



	Classical	Electronica	Нір Нор	Jazz	Рор	Metal
1	0	1	0	0	0	0
	0	0	0	1	0	0
	0	0	0	0	0	1

Multiclass Classification 💔 Binary Encoding

Why not use a binary encoding?

- Bits of binary encoding rarely have semantic information.
 - Partial column matches is not a sign of similarity.
 - Forces learning algorithm to learn decoding...
- Unclear interpretation of uncertain output
 - What does [0.6, 0.6, 0.7] mean?
 - Probability interpretations are nonsensical.
 - Rounding to 0/1 may not match a class.

Classical	0	0	0
Electronica	0	0	1
Нір Нор	0	1	0
Jazz	0	1	1
Рор	1	0	0
Metal	1	0	1

Preparing Data for Learning

- Challenges
- Fixed Interface
- Sequence Interface

Sequence View

- Encode more sophisticated inputs and outputs as sequences of numbers.
- Will apply some parts of our models repeatedly
 - Originally recurrent neural networks
 - Recently attention and transformers
- Brief look at strings now, much more later.

String Tokenization (then One Hot Encoding)

[3] import tiktoken

[4] encoding = tiktoken.encoding_for_model("gpt-4o")

[6]	tokens = encodin tokens	<pre>ig.encode("The steak was ter</pre>	rrible, the salad was rotten, and	the soup tasted	like socks")
[→]	[976, 67314, 673, 28380, 11, 290, 38312, 673, 146652, 11, 326, 290, 29684, 88244, 1299, 54699]	<pre>[8] [encoding.decode([t]) fo → ['The', ' steak', ' was', ' terrible', ',', ' the', ' salad', ' was', ' rotten', ',', ' and', ' the', ' soup', ' tasted', ' like', ' socks']</pre>	"The steak was terrible, the salad was rotten, and the soup tasted like socks"	■	Deep learning model

Lecture Outline

- Supervised Learning
- Preparing Data for Learning
- Where are We Going Next?

Where are we going next?

- Shallow neural networks
 - Universal approximation
- Deep neural networks
 - More flexibility with fewer parameters
- Loss functions
 - How do we decide what parameters are better?
 - Where did least squares come from?
 - When should we use other loss functions?
- Fitting models / Gradients / Measuring / Regularization
 - How we actually train these neural networks
 - And encourage them to generalize...

Feedback?

